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Background

Motivation

o FAA requirement for alarms to go off within 60 seconds of fire ignition.

@ Several different detection methods are generally used together, e.g. temperature,
smoke/particulate, radiation, optical

o Their effectiveness is determined by the dynamics of a particular fire and their
relative position.

o Accurate prediction of fire-induced flow in a cargo hold is a necessary first step to
predicting detection capabilities.

o More reliable detection capabilities could potentially reduce false alarms.



Background

B707 cargo geometry

o Experimental and computational data for B707 cargo fires available from work at
Sandia and FAA Tech center.

o Current goal is to perform a direct comparison of those results with our new
solver.

Figure : B707 cargo hold geometry.



Background

Fire-induced fluid dynamics

@ Detailed simulation of the combustion process is expensive and unnecessary; the
large scale dynamics are primarily determined by the amount of heat release, its
position, and the geometry.

o Commonly used models apply a heat source and input of reaction products (CO,
CO2, etc.)

2 Vorticity:

Figure : Flow driven by an enclosed heat source.



Background

Cluttered geometry 2D

o A real fire is unlikely to happen in an empty cargo hold.

o Including some obstructions changes the flowfield considerably.
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Figure : t = 20s after ignition.




Background

Simulation challenges

Simulating a single fire case is relatively straightforward, but of limited utility. There
are several uncertainties to address:
o Initial position, size, and strength of a fire is unknown.

o Cargo hold geometry varies considerably depending on contents.

Simulation needs:
o Complex geometries: must handle complex boundary conditions accurately.
o Fast: uncertainty quantification will require a large number of simulations.
o Accurate: must accurately simulate vorticity-dominated turbulent flows for
transport prediction.



Background

Available tools

FDS: NIST's Fire Dynamics Simulator.

@ Pros:

o Purpose-built for smoke and heat transport from fires using large eddy simulation.
o Combustion and radiation models.
o Built-in post-processing tools related to smoke transport.

o Cons:
o Handles complex boundaries with Cartesian cut cells: inaccurate for anything but
rectangles.
OpenFOAM
o Pros:

o Similar combustion and radiation models to FDS, with additional thermodynamic
models.

o Handles arbitrary body-fitted meshes.

o Wide array of LES models.

o Cons:
o Very slow for large cases.
Fluent
o Pros:

o Well known, full combustion and radiation modeling.
o Handles arbitrary body-fitted meshes.
o Wide array of LES models.

o Cons:
o Commercial

All limited to O(Ax?) accuracy.



Discontinuous Galerkin method for buoyancy-driven flow

High order accurate CFD

o Even very low intensity fires will have very complex flow phenomena poorly
captured by low-order CFD methods.

Figure : Instability of smoke from a cigarette, Perry & Lim, 1978
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High order accurate CFD

Order of accuracy in finite differences:

du  u(x+ Ax) — u(x)

— = oA

dx Ax +0(Ax)

du  u(x) — u(x — Ax)

—r "7 1 0(A 1
dx Ax +0(Ax) S
du ~ u(x + Ax) — u(x — Ax) + 0(ax?)

dx 2Ax

o Error scales like ~ O(Ax") for order n.
o For a 15t order method, halving the grid spacing reduces error by ~ 1/2.

o For a 4t" order method, halving the grid spacing reduces error by ~ 1/16.
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High order accurate CFD
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Figure : Generic error vs cost plot, Wang, 2007
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Discretization method

For a multi-dimensional conservation law

%—I—V-f(u(x,t),x,t)zo (2)
approximate u(x, t) by
Np Np
u(x, t) = up(x, t) = Z up(x;, ) (x) = Z o (t)i(x) 3)
i=1 i=1

where /;(x) is the multidimensional Lagrange interpolating polynomial defined by grid
points x;, Np is the number of nodes in the element, and ¥;(x) is a local polynomial
basis.

o Of the two equivalent approximations here, the first is termed nodal and the
second modal. i.e., up represents values of u at discrete nodes with a
reconstruction based on Lagrange polynomials, and i; represents
modes/coefficients for reconstruction with the basis ,.
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Discretization method

Substituting the approximation uy, into the conservation law:

8u;,
V-f,=0
e TV

Integrate with a test function v, the same as used to represent the polynomial above,

a”"w, dV+/V fop; dV =0

Integration by parts on the spatial component:

8”"¢, dv — /WJJ f dv+}{w,f*,, nds=0

Using the modal representation, up, = Z,.:’l 0; (t)i(x)
aulwl

Y dV — /vw, fiyi dv+]§¢,f,*w, ndS=0

v
which gives the semi-discrete form of the classic modal DG method,
. di; *
N;— = [ Vy;-fih; dV + ¢ ¢ifF¢; -n dS
dt v s
Here M is the mass matrix (identity for orthonormal bases), n the vector normal at an

element surface, and £* is a conservative flux function at interfaces, equivalent to that
used in finite volume methods.
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Discretization method

The modal coefficients 0 can always be represented on nodal locations u through a
change of basis by the Vandermonde matrix,

Va=u

which turns the previous modal method into a nodal method. This code uses
unstructured tetrahedral elements in 3D with Legendre-Gauss-Lobatto nodes:

(a) Volume nodes for varying order, Hesthaven (b) N = 2 element surfaces; nodes are at line
& Warburton. intersections.
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Discretization method - solving the discretized equations

This ends up with a potentially very large system of ODEs to be solved:

du
— =f(u,u,t
ikl )
Simplest method for integrating this system in time is the explicit (forward) Euler
method:
u™ = u" 4+ Atf(u, 0’ t)"

Unfortunately, explicit time-stepping for high-order DG is stable only for excessively
small At,

Ax

)

where a mesh cell Ax can be very small (boundary layers, small geometric features)
and N2 quickly grows large. For any engineering-scale problem, explicit methods are
unfeasible for use.

At = O(

o This requires the use of implicit time-stepping methods, e.g. 1st order backward
Euler:

u™?! = u" + Atf(u, v, t)"H?

where we now have a set of non-linear equations to solve for u"+1. Typically we use
3rd order or higher time-accurate schemes.
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Discretization method - solving the discretized equations

Task is to solve the very large non-linear system at each time step:
F(u)=0

Newton's method for this problem derives from a Taylor expansion (Knoll/Keyes
2004):
F(u*™!) = F(u*) + F/(uf) (k! — u¥)

resulting in a sequence of linear systems
JWR)ouk = —F(uk), o = uk 4 suk

for the Jacobian J.

o The linear system J(u*)duX = —F(u¥) is straighforward enough to write, but for
these methods J is a very large sparse matrix which is prohibitively expensive to
actually compute and store.

o A mesh of 100,000 4th order cells requires roughly 250GB of memory to store in
64-bit floats.
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Discretization method - solving the discretized equations

o A remedy for this is to use a “Jacobian-Free" method based on Krylov subspace
iterations (e.g. GMRES, BiCGSTAB), which only require the action of the
jacobian in the form of matrix-vector products:

K = span(Jér, J25r, J36r, ...)

which can be approximated by a finite difference:
Jv = [F(u+ ev) — F(v)]/e

@ This enables a solution method for the non-linear system that doesn't require ever
explicitly forming the Jacobian, and instead only requires the evaluation of the
RHS of the ODE.

o This is the Jacobian-free Newton-Krylov (JFNK) method:

o Take a Newton step from the previous iterate.
o Approximately solve the linear system using a matrix-free Krylov method.
o Repeat until desired convergence is reached, and move to the next physical time

step.
o Current solver uses a damped Newton line-search for the non-linear systems
coupled with a GMRES Krylov method for the linear systems.
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1D test case

1D Poisson test case to illustrate accuracy vs computational cost:

@ = —20 + a¢"' cos p — ag’® sin ¢
dx2 (4)

a=0.5, ¢(x) = 20mx3
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1D test case

066 067 068 069 07 071 072

Figure : Close up of a single element with a 9th order polynomial basis.
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1D test case

o For an ideal numerical method, computational cost is linearly proportional to the
number of unknowns (degrees of freedom).
o e.g. 10 cells with 10 quadrature nodes compared to 50 cells with 2 quadrature
nodes.
o The end result is achieving equivalent accuracy with less computational expense
or higher accuracy at similar computational expense compared to traditional finite
volume methods.
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Figure : Error for varying order of accuracy with constant DOFs on 1D test case.
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case - Isentropic vortex
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(a) Coarse mesh for vortex case. (b) Initial vorticity.
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Test case - Isentropic vortex

o Non-dissipative vorticity convection is essential for these simulations.

o Test case of Yee et al (1999) for a convecting vortex is an exact solution for the
compressible Euler equations. Free-stream conditions are

p=1,U=Uoo,V=Voo,p=1

with an initial perturbation

exp(1 — r?)

p=p"

for vortex center (xo,¥0), and distance from center r = /(x — x0)2 + (¥ — y0)2.
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Test case - Isentropic vortex - 1st order (c.f. 2nd order FV)

Figure : Vortex transport over 35 characteristic lengths, O(Ax).
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Test case - Isentropic vortex - 2nd order

Figure : Vortex transport over 35 characteristic lengths, O(Ax?).
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Test case - Isentropic vortex - 3rd order

Figure : Vortex transport over 35 characteristic lengths, O(Ax3).
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Test case - Isentropic vortex - 4th order

Figure : Vortex transport over 35 characteristic lengths, O(Ax?).
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Test case - Isentropic vortex order of accuracy

o L, norm of kinetic energy losses for isentropic vortex convection.

L2 error of u?

Grid refinement

Figure : Solution accuracy versus grid refinement, for levels h, h/2, and h/4.



Cargo hold sample results

AIAA 2016 2D cargo hold results

Uncertainy Quantification for Cargo Hold Fires, DeGennaro, Lohry, Martinelli, &
Rowley, 57th AIAA Structures, Structural Dynamics, and Materials Conference, San
Diego CA, Jan. 2016.

o Two objectives of this study:

o Assess the feasibility of using DG methods for buoyancy-driven flows,
o Use uncertainty quantification techniques to analyze statistical variations in flows.



Cargo hold sample results

AIAA 2016 2D cargo hold results

o The mock fire sources were chosen to vary based on 2 parameters: fire strength
and location.
o Fire location was chosen to vary between the centerline and the far right wall,
exploiting the symmetry of the geometry.
o Fire strength was chosen to vary between a weak, slowly rising plume and a faster
rising plume.

@ 5 x 5 parameter sweep performed for these 2 parameters.

e Simulations performed with 3rd order elements (10 nodes per 2D cell) with
approximately 1,500 triangular cells, or 15,000 nodes. All boundary conditions are
isothermal non-slip walls. Time integration by 3rd order backward difference
formula (BDF).
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Figure : Flow driven by a heat source in a 2D cross-section. Colormap shown is temperature
normalized by the initial bulk temperature.



Cargo hold sample results

AIAA 2016 2D cargo hold results

o Time evolution of temperature field:

(d) t = 5s. (e) t = 6s. (f) t=17s.

Figure : Temperature field time evolution for T, = 1.486, x, = 0.024 case.



Cargo hold sample results

AIAA 2016 2D cargo hold results

@ Variation of fire source location:

(a) xs = 0.024m. (b) xs = 0.116m. (c) xs = 0.262m.

| &V

(d) xs = 0.387m. (e) xs = 0.480m.

Figure : Temperature fields for T, = 1.486 source at the 5 source locations, time t = 10s after
startup.



Cargo hold sample results

AIAA 2016 2D cargo hold results

o Variation of fire source temperature:

(a) T, = 1.214. (b) T, =1.269. (¢) T, =1.350.

W O

(d) Te =1.431. (e) T, = 1.486.

Figure : Temperature fields at x, = 0.024m for the 5 values of temperature source, time
t = 10s after startup.



AIAA 2016 2D cargo hold results

Cargo hold sample results
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Figure :

Time-averaged ceiling temperature distributions collected at the 25 quadrature nodes.
Each subtitle corresponds to the parameter pair (xs, Ts).



3D development

3D isentropic vortex

o Current work is on verification and validation of the full 3D problem.
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3




3D development

3D isentropic vortex




3D development

3D isentropic vortex

Video



3D driven cavity

o Standard test case for viscous CFD. The “lid” of the cavity drives circulation
through viscous entrainment similar to the buoyancy-driven instabilities.

Figure : 354 cells 3D, 6x6x1 mesh.



3D development
3D driven cavity

Velocity Magnitude: 0.10.20.30.40.50.6 0.7 0.80.9

Figure : 1st order, 354 cells.




3D development
3D driven cavity

Velocity Magnitude: 0.10.20.30.40.50.6 0.7 0.80.9

Figure : 2nd order, 354 cells.




3D development
3D driven cavity

Velocity Magnitude: 0.10.20.30.40.50.6 0.7 0.80.9

Figure : 3rd order, 354 cells.




3D driven cavity

Velocity Magnitude: 0.10.20.30.40.50.6 0.7 0.80.9

Figure : 4th order, 354 cells.



3D development

3D driven cavity

Velociy Magnitude: 0.1020304 0506070808 Velosity Magnitude: 0.10203040506070809 Velociy Magnitude: 01020304 0506070809

Velocity Magnitude: 0.1020304050607 0808

Figure : 3D DG solution with 354 cells c.f. Bruneau & Saad (2006), 1024 x 1024 grid.



3D development

Ongoing solver development

2D work completed:

o Established that high-order-accurate discontinuous Galerkin methods can be used
for simulating buoyancy-driven flows such as those seen in cargo hold fires, using
unstructured meshes suitable for arbitrary geometries.

o Demonstrated the use of these simulations in an uncertainty quantification
framework to aid in fire sensor placement.

Current work is on extending this to a 3D solver for full cargo hold simulation:

o Functioning:
e 3D unstructured flow solver, spatial discretization with arbitrary order of accuracy.
o Parallel scaling.
o Jacobian-Free Newton-Krylov for solution of non-linear algebra.
o Implicit time integration for high order temporal accuracy and large time step
stability.
e 3D viscous effects
o Work in progress:
e Full testing of 3D buoyancy-driven effects.
o Implementation of Large Eddy Simulation (LES) models.
o Full cargo hold simulations for validation.
o Direct quantitative comparisons between OpenFOAM/FDS and this DG work for
validation.
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